Convex polyhedra of doubly stochastic matrices—IV

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Polyhedra of Doubly Stochastic Matrices. I. Applications of the Permanent Function

The permanent function is used to determine geometrical properties of the set 52, of all II x it nonnegative doubly stochastic matrices. If ,F is a face of Q, , then F corresponds to an n x n (0, I)-matrix A, where the permanent of A is the number of vertices of 3. I f A is fully indecomposable, then the dimension of 9 equals u(A) 2n + 1, where u(A) is the number of I’s in A. The only twodimens...

متن کامل

Refold rigidity of convex polyhedra

We show that every convex polyhedron may be unfolded to one planar piece, and then refolded to a different convex polyhedron. If the unfolding is restricted to cut only edges of the polyhedron, we identify several polyhedra that are “edge-unfold rigid” in the sense that each of their unfoldings may only fold back to the original. For example, each of the 43,380 edge unfoldings of a dodecahedron...

متن کامل

Affine Unfoldings of Convex Polyhedra

We show that every convex polyhedron admits a simple edge unfolding after an affine transformation. In particular there exists no combinatorial obstruction to a positive resolution of Dürer’s unfoldability problem, which answers a question of Croft, Falconer, and Guy. Among other techniques, the proof employs a topological characterization for embeddings among the planar immersions of the disk.

متن کامل

Spiral Unfoldings of Convex Polyhedra

The notion of a spiral unfolding of a convex polyhedron, resulting by flattening a special type of Hamiltonian cut-path, is explored. The Platonic and Archimedian solids all have nonoverlapping spiral unfoldings, although among generic polyhedra, overlap is more the rule than the exception. The structure of spiral unfoldings is investigated, primarily by analyzing one particular class, the poly...

متن کامل

Continuous Blooming of Convex Polyhedra

We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1976

ISSN: 0024-3795

DOI: 10.1016/0024-3795(76)90013-6